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Estimation of regression functions from independent and identically distributed data is con-
sidered. The L2 error with integration with respect to the design measure is used as an error
criterion.Usually in the analysis of the rate of convergenceof estimates a boundedness assump-
tion on the explanatory variable X is made besides smoothness assumptions on the regression
function and moment conditions on the response variable Y . In this article we consider the
kernel estimate and show that by replacing the boundedness assumption on X by a proper
moment condition the same (optimal) rate of convergence can be shown as for bounded data.
This answersQuestion 1 in Stone [1982. Optimal global rates of convergence for nonparametric
regression. Ann. Statist., 10, 1040–1053].
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1. Introduction

Let (X,Y), (X1,Y1), (X2,Y2), . . . be independent identically distributed Rd × R-valued random vectors with E{Y2} <∞. In regres-
sion analysis we want to estimate the so-called response variable Y after having observed the value of the so-called explanatory
variable X, i.e. we want to determine a function f with f (X) “close” to Y . If “closeness” is measured by the mean squared error,
then one wants to find a function f ∗ such that

E{|f ∗(X) − Y|2} = min
f

E{|f (X) − Y|2}. (1)

Letm(x) := E{Y|X = x} be the regression function and denote the distribution of X by �. The well-known relation which holds
for each measurable function f

E{|f (X) − Y|2} = E{|m(X) − Y|2} +
∫

|f (x) − m(x)|2�(dx) (2)

implies thatm is the solution of the minimization problem (1), E{|m(X)− Y|2} is the minimum of (2) and for an arbitrary f , the L2
error

∫ |f (x) − m(x)|2�(dx) is the difference between E{|f (X) − Y|2} and E{|m(X) − Y|2}.
In the regression estimation problem the distribution of (X,Y) (and consequently m) is unknown. Given a sequence Dn =

{(X1,Y1), . . . , (Xn,Yn)} of independent observations of (X,Y), our goal is to construct an estimate mn(x) = mn(x,Dn) of m(x) such
that the L2 error

∫ |mn(x) − m(x)|2�(dx) is small.
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It is well known that there exist universally consistent estimates, i.e., estimates mn with the property

E
∫

|mn(x) − m(x)|2�(dx) → 0 (n → ∞)

for all distributions of (X,Y) with E{Y2} <∞. This was first shown by Stone (1977) for the nearest neighbor estimate and later
extended by numerous papers, see, e.g., Devroye et al. (1994), Greblicki et al. (1984), Györfi et al. (1998), Györfi and Walk (1996,
1997), Kohler (1999, 2002), Kohler and Krzy �zak (2001), Lugosi and Zeger (1995), Nobel (1996) and Walk (2005, 2008). See also
Györfi et al. (2002) and the literature cited therein.

Unfortunately, there do not exist estimates for which the expected L2 error converges to zero with some nontrivial rate for all
distributions of (X,Y), cf. Cover (1968) and Devroye (1982), or Györfi et al. (2002, Chapter 3). So in order to derive nontrivial rates
of convergence, one has to restrict the class of distributions, in particular by assuming smoothness of the regression function.

Let D be a class of distributions of (X,Y). In the classical minimax theory, one considers the maximal error of an estimate
within the classD of distributions of (X,Y) and tries to construct estimates for which this maximal error is minimal, i.e., one tries
to construct estimatesmn such that

sup
(X,Y)∈D

E
∫

|mn(x) − m(x)|2�(dx) ≈ inf
m̂n

sup
(X,Y)∈D

E
∫

|m̂n(x) − m(x)|2�(dx). (3)

Here the infimum is taken over all estimates. Then the optimal minimax rate of convergence is defined as the rate of convergence
at which the right-hand side of (3) converges to zero.

In Stone (1982) the optimal minimax rate of convergence for a class of distributions of (X,Y) was determined, where the
regression functions are (p,C)-smooth according to the following definition.

Definition 1. Let p = k + � for some k ∈ N0 and some 0 < ��1. Let C >0. A function m : Rd → R is called (p,C)-smooth if for all
k1, . . . , kd ∈ N0 with k = k1 + · · · + kd the partial derivatives

�km

�xk11 · · ·�xkdd
ofm exist and satisfy∣∣∣∣∣∣∣

�km

�xk11 · · ·�xkdd
(x) − �km

�xk11 · · ·�xkdd
(z)

∣∣∣∣∣∣∣ �C · ‖x − z‖� (x, z ∈ Rd).

Let D(p,C) be the class of all distributions of (X,Y) where X takes on values in [0, 1]d,X has a density with respect to the
Lebesgue measure which is bounded away from zero and infinity by some constants c1 and c2, Var{Y|X = x} is bounded and m is
(p,C)-smooth. It follows from Stone (1982), that for this class of distributions

lim inf
n→∞ inf

m̂n
sup

(X,Y)∈D(p,C)

E
∫ |m̂n(x) − m(x)|2 dx

C2d/(2p+d)n−2p/(2p+d)
>C1 >0 (4)

for some constant C1 independent of C (cf. Györfi et al., 2002, Theorem 3.2), and that a suitably defined local polynomial kernel
estimate satisfies

lim sup
n→∞

sup
(X,Y)∈D(p,C)

E
∫ |mn(x) − m(x)|2 dx

C2d/(2p+d)n−2p/(2p+d)
<C2 <∞ (5)

for some constant C2 independent of C. Actually, both bounds have been proven in Stone (1982) not for the expected L2 error
but instead in probability, which is a stronger result for the lower bound and a weaker result for the upper bound. The (slightly)
stronger upper bound (5) holds at least for p�1, cf. Györfi et al. (2002, Theorem 5.2).

Since X has a density with respect to the Lebesgue–Borel measure, which is bounded away from zero and infinity, for
(X,Y) ∈ D(p,C), the same result also holds for the L2 error with integration with respect to the distribution � of X, which is the
error criterion considered in this paper. But in this case one can relax the assumption on X: It follows from Theorems 4.3, 5.2
and 6.2 in Györfi et al. (2002) (cf., Spiegelman and Sacks, 1980; Györfi, 1981; Kulkarni and Posner, 1995) that suitably defined
partitioning, kernel and nearest neighbor estimates satisfy

E
∫

|mn(x) − m(x)|2�(dx)�const · C2d/(2p+d)n−2p/(2p+d) (6)
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provided X takes on values in [0, 1]d, Var{Y|X=x} is bounded andm is (p,C)-smooth for some p�1. In case of the nearest neighbor
estimates one needs the additional condition d�2p, for the other two estimates the result holds in any dimension (cf., Györfi
et al., 2002, Lemma 6.4; Liitiäinen et al., 2007, Proposition 2.3). For smoother regression functions (i.e., (p,C)-smooth regression
functions with p >1), it was shown in Kohler (2000) that in case of bounded X and Y suitably defined the least squares estimates
also achieve the above optimal rate of convergence, regardless whether the distribution of X has a density with respect to the
Lebesgue–Borel measure or not.

If one compares these rate of convergence results with the universal consistency results cited above, then one gets the
impression that it should be possible to replace the boundedness assumption on X by weaker conditions like existence of
some moments of ‖X‖. This conjecture was already formulated in Stone (1982) as Question 1. In this paper we show that the
conjecture is indeed true. This is interesting in applications because it implies that one can get reasonable results for distributions
with bounded support even in case of large values of ‖X‖. In particular we show that for m bounded and (p,C)-smooth with
0 < p�1, Var{Y|X = x} bounded and E‖X‖� <∞ for some � >2p, a suitably defined kernel estimate satisfies (6). Furthermore
we show that if we replace the moment condition by E‖X‖� <∞ for some 0 <� <2p,there exists no estimate for which (6)
holds for all such distributions. Similar results for partitioning and nearest neighbor regression estimates have been derived in
Kohler et al. (2006).

Throughout the paper we will use the following notations: N,R and R+ are the sets of natural, real and nonnegative real
numbers, respectively. The euclidean norm of x ∈ Rd is denoted by ‖x‖. Set Sz,r = {x ∈ Rd : ||x − z|| < r}, z ∈ Rd, r >0.1D denotes
the indicator function of a set D. For x ∈ R, �x	 is the least integer greater than or equal to x, and 
x� is the greatest integer less
than or equal to x. Throughout the proofs c1, c2, . . . denote suitable constants.

The main results are stated in Section 2 and proven in Sections 3 and 4.

2. Main results

Let mn be the kernel estimate defined by

mn(x) =
∑n

i=1K
( x−Xi
hn(x)

)
· Yi∑n

i=1K
( x−Xi
hn(x)

)

(with 0/0 := 0) where the measurable kernel K : Rd → R+ satisfies

c11S0,1 (x)�K(x)�c21S0,1 (x) (x ∈ Rd) (7)

for some constants 0 < c1�c2 <∞, and the bandwidth hn(x) depends on x. We choose hn(x) such that it will increase with ‖x‖.
More precisely, we set

hn(x) =
{
hn · (1 + ‖x‖)�/(2p) if ‖x‖� 
n2p/((2p+d)·�)�,
∞ if ‖x‖ > 
n2p/((2p+d)·�)�, (8)

where p and � are defined below and hn = C−2/(2p+d)n−1/(2p+d).

Theorem 1. Assume that the distribution of (X,Y) satisfies the following four conditions:

(A1) m(x) = E{Y|X = x} is bounded in absolute value by some constant L�1.
(A2) m(x) = E{Y|X = x} is (p,C)-smooth for some 0 < p�1, C�1.
(A3) The conditional variance of Y satisfies

Var{Y|X = x}��2
0

for some �0�0.
(A4) There exists a constant � >2p such that

E‖X‖� �M

for some constantM�0.

Define the kernel estimatemn as above with kernel K satisfying (7) and with bandwidth hn(x) defined by (8). Then

E
∫

|mn(x) − m(x)|2�(dx)�c3 · C2d/(2p+d) · n−2p/(2p+d)

where c3 depends only on d, p,�, L,M,�0, c1 and c2.
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Theorem 1 implies the following result concerning minimax rate of convergence: Let 0 < p�1,C�1,� >2p, L >0,M�0 and
�0 >0. LetD(p,C,�, L,M,�0) be the class of all distributions of (X,Y) which satisfy (A1)–(A4) for these values of p,C,�, L,M and �0.
Then

sup
(X,Y)∈D(p,C,�,L,M,�0)

E
∫

|mn(x) − m(x)|2�(dx)�c3 · C2d/(2p+d)n−2p/(2p+d).

It follows from (4) that the above rate is the optimal minimax rate of convergence for the classD(p,C,�, L,M,�0) of distributions
of (X,Y). Next we present a lower bound on the rate of convergence, which implies that one needs a condition on the tails of ||X||
in order to get the above rate of convergence result.

Theorem 2. Let p >0,C >0 and � <2p. Then we have forM sufficiently large

lim inf
n→∞ n2p/(2p+d) inf

mn
sup

(X,Y)∈D(p,C,�,C,M,1)
E
∫

|mn(x) − m(x)|2�(dx) = ∞.

Remark 1. Let the kernel estimatemn be defined as above with kernel K satisfying (7). By rescaling of the kernel we can assume
w.l.o.g. that c1�1. In this case the estimate can be also defined via

mn(x) =
∑n

i=1K
( x−Xi
hn(x)

)
· Yi

max{1,∑n
i=1K(

x−Xi
hn(x)

)}
. (9)

This definition of the kernel estimate was used in Spiegelman and Sacks (1980) in connection with the analysis of the rate of
convergence of the estimate for bounded X. By combining ideas presented there with the proof of Theorem 1, it can be shown
that Theorem 1 also holds for the estimate (9) even if the kernel does not satisfy (7) but is instead bounded, has compact support
and satisfies

K(x)�c∗1S0,� (x) (x ∈ Rd)

for some c∗ >0 and some � >0.

Remark 2. Theorem 1 above extends well-known optimal rate of convergence results to unbounded distributions of the ex-
planatory variable X in case of (p,C)-smooth regression functions where p satisfies p�1. In L2 regression it is known that kernel
estimates (like other local averaging estimates) are not able to achieve the optimal rate of convergence for p >1.5 even in case of
bounded ‖X‖ (cf., Eqs. (5.2) and (5.4) in Györfi et al., 2002). Therefore it is not possible to extend Theorem 1, which considers the
kernel estimate, in such a way that we get the optimal rate of convergence for arbitrarily smooth regression functions.

Remark 3. The kernel estimate above is easy to compute in practice, but as pointed out in the previous remark it does not achieve
the optimal L2 rate of convergence for very smooth regression functions. We next show that under stronger conditions on Y than
in Theorem 1 and with a least squares estimate, which is very hard to compute in practice, it is possible to get the optimal L2 rate
of convergence also for very smooth regression functions and X with unbounded support.

To see this, define a partitionPn of Rd depending on C,p,� >0 and n ∈ N as follows: For j ∈ N set

Mn,j = �C2/(2p+d)n1/(2p+d)/j�/(2p)	

and let Ajn,1, . . . ,A
j

n,(2j)dMd
n,j

be the uniform partition of [−j, j]d consisting of (2j)d · Md
n,j cubes of the side length hn,j = 1/Mn,j. Set

jmax(n) = �n2p/((2p+d)·�)	
and definePn by

Pn = {Rd\[−jmax(n), jmax(n)]d} ∪ {A1n,k : k = 1, . . . , 2dMd
n,1} ∪

jmax(n)⋃
j=2

{Ajn,k\[−(j − 1), j − 1]d : Ajn,k\[−(j − 1), j − 1]d � ∅}.

LetFn be the set of all piecewise polynomials of degree M with respect toPn, which are bounded in absolute value by (L + 1).
Let mn be the corresponding least squares estimate, i.e.,

mn(·) = argmin
f∈Fn

1
n

n∑
i=1

|f (Xi) − Yi|2.
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Assume that

(A3′) K2 · E{e(Y−m(X))2/K2 − 1|X}��0 a.s.

for some K,�0 >0, and, in addition, (A1), (A2) (with p >0 arbitrary) and (A4) hold.
Then

E
∫

|mn(x) − m(x)|2�(dx)�const · C2d/(2p+d) · n−2p/(2p+d),

so the least squares estimate achieves the optimal rate of convergence also for unbounded support of X and p >1.
We can derive this result using the proof of Corollary 1 in Kohler (2006) which implies

E
∫

|mn(x) − m(x)|2�(dx)�const ·
(
(M + 1) · |Pn|

n
+ inf

f∈Fn

∫
|f (x) − m(x)|2�(dx)

)
.

(Actually, this result is proven only in probability in Kohler, 2006. Nevertheless this implies the above result, since the probability
in Kohler, 2006, converges to zero exponentially fast and since the L2 error is bounded.)

Now it is easy to see that

(M + 1) · |Pn|
n

�const · C2d/(2p+d) · n−2p/(2p+d).

Furthermore, by Lemma 11.1 in Györfi et al. (2002), we can bound the approximation error by

inf
f∈Fn

∫
|f (x) − m(x)|2�(dx)�const ·

∑
A∈Pn ,A⊆[−jmax(n),jmax(n)]d

C2 · |A|2p · �(A) + L2 · �(Rd\[−jmax(n), jmax(n)]d).

By the definition ofPn we can bound the right-hand side above by

const · C2 ·
∫
[−jmax(n),jmax(n)]d

[hn · (1 + ‖x‖)�/(2p)]�(dx) + L2 · �(Rd\[−jmax(n), jmax(n)]d),

and by bounding this as in the proof of Theorem 1 below one gets the desired result.

3. Proof of Theorem 1

We have

E{(mn(x) − m(x))2|X1, . . . ,Xn} = E{(mn(x) − m̂n(x))2|X1, . . . ,Xn} + (m̂n(x) − m(x))2,

where

m̂n(x) = E{mn(x)|X1, . . . ,Xn} =
∑n

i=1K
( x−Xi
hn(x)

)
· m(Xi)∑n

i=1K
( x−Xi
hn(x)

) .

Now,

E{(mn(x) − m̂n(x))2|X1, . . . ,Xn}�
(
c2
c1

)2
·
∑n

i=1Var{Yi|Xi}1Sx,hn(x) (Xi)
(
∑n

i=11Sx,hn(x)
(Xi))

2

� c4�
2
0

1
B(x)

· 1{B(x)>0}

where

B(x) =
n∑

i=1

1Sx,hn(x)
(Xi)

is binomially distributed with parameters n and q = �(Sx,hn(x)) and c4 = (c2/c1)
2.
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Furthermore, by Jensen's inequality and boundedness and (p,C)-smoothness ofmwe get

(m̂n(x) − m(x))2

�

(
c2
c1

)2
·
⎛
⎝
∑n

i=1|m(Xi) − m(x)| · 1Sx,hn(x) (Xi)∑n
i=11Sx,hn(x)

(Xi)

⎞
⎠
2

· 1{B(x)>0} + m(x)21{B(x)=0}

�c4

∑n
i=1(m(Xi) − m(x))2 · 1Sx,hn(x) (Xi)∑n

i=11Sx,hn(x)
(Xi)

· 1{B(x)>0} + m(x)21{B(x)=0}

�c4 min{C2|hn(x)|2p, 4L2} + L21{B(x)=0}.

Gathering the above results we get

E{(mn(x) − m(x))2}�c4�
2
0E
{

1
B(x)

· 1{B(x)>0}
}

+ c4 min{C2|hn(x)|2p, 4L2} + L2P{B(x) = 0}.

Using

E
{

1
B(x)

· 1{B(x)>0}
}

=
n∑

k=1

1
k

·
(
n
k

)
qk(1 − q)n−k

�

n∑
k=1

2
k + 1

·
(
n
k

)
qk(1 − q)n−k

= 2
(n + 1) · q

n∑
k=1

(
n + 1
k + 1

)
qk+1(1 − q)n+1−(k+1)

= 2
(n + 1) · q · (1 − (1 − q)n+1 − (n + 1) · q · (1 − q)n)

�
2

(n + 1) · �(Sx,hn(x))
− 2 · P{B(x) = 0}

we get

E{(mn(x) − m(x))2}� max{c4�2
0, L

2} · 2
(n + 1) · �(Sx,hn(x))

+ c4 min{C2|hn(x)|2p, 4L2}.

Hence

E
∫

|mn(x) − m(x)|2�(dx)

�
2 · max{c4�2

0, L
2}

n + 1
·
∫

1
�(Sx,hn(x))

�(dx) + c4

∫
min{C2|hn(x)|2p, 4L2}�(dx). (10)

Next we bound the first integral on the right-hand side of (10). Because of �(Sx,hn(x))=�(Rd)=1 for ‖x‖ > 
n2p/((2p+d)·�)� we have

∫
1

�(Sx,hn(x))
�(dx)�

∫
S0,2

1
�(Sx,hn )

�(dx) +

n2p/((2p+d)·�)�∑

j=3

∫
S0,j\S0,j−1

1
�(S

x,hnj�/(2p)
)
�(dx) +

∫
Rd\S

0,
n2p/((2p+d)·�)�
1�(dx).

Fix 3� j�
n2p/((2p+d)·�)� and set r = hnj�/(2p). Then

r�C−2/(2p+d)n−1/(2p+d)n1/(2p+d)�1.

Choose z1, . . . , zl such that the balls

Sz1,r/4, . . . , Szl ,r/4 (11)

are contained in S0,j+1\S0,j−2, do not overlap and such that the number l of these balls is maximal. Then l can be bounded by

l�
Vol(S0,j+1) − Vol(S0,j−2)

Vol(S0,r/4)
= (j + 1)d − (j − 2)d

(r/4)d
�c5 · jd−1−�·d/(2p) · 1

hdn
,
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where c5 = 2d8d and Sz1,r/2, . . . , Szl ,r/2 cover S0,j\S0,j−1 (because if any point z ∈ S0,j\S0,j−1 is in none of those balls, then Sz,r/4
does not overlap with any of the balls (11) and is contained in S0,j+1\S0,j−2). From this we can conclude

∫
S0,j\S0,j−1

1
�(S

x,hnj�/(2p)
)
�(dx)�

l∑
k=1

∫
Szk ,r/2

1
�(Sx,r)

�(dx)

�

l∑
k=1

∫
Szk ,r/2

1
�(Szk ,r/2)

�(dx) = l

since for x ∈ Szk ,r/2
we have Szk ,r/2

⊆ Sx,r . Applying a similar argument to
∫
S0,2

1
�(Sx,hn )

�(dx) we get

∫
1

�(Sx,hn(x))
�(dx)�c5 · 1

hdn
·

∞∑
j=1

(
1
j

)1+d·(�/(2p)−1)
+ �(Rd\S

0,n2p/((2p+d)·�)−1
).

The Markov inequality implies

�(Rd\S
0,
n2p/((2p+d)·�)�)�

E‖X‖�
(
n2p/((2p+d)·�)�)�

�E‖X‖� · 2�n−2p/(2p+d). (12)

From this we can conclude

∫
1

�(Sx,hn(x))
�(dx)�c6 ·

(
1

hdn
+ n−2p/(2p+d)

)

for some constant c6 depending on d, p,� and M.
Concerning the second term on the right-hand side of (10) we have
∫

min{C2|hn(x)|2p, 4L2}�(dx)

�C2 ·
∫
(hn · (1 + ‖x‖)�/(2p))2p�(dx) + 4L2�(Rd\S

0,
n2p/((2p+d)·�)�)

�C2h2pn · 2� · (1 + E‖X‖�) + 4L2�(Rd\S
0,
n2p/((2p+d)·�)�)

�c7 · (C2h2pn + n−2p/(2p+d)),

where the last inequality follows from (12) and c7 = max{2�(1 + E‖X‖�), 4L2E‖X‖�2�}.
Putting together the above results we get

E
∫

|mn(x) − m(x)|2�(dx)

�
2 · max{c4�2

0, L
2}

n + 1
· c6 ·

(
1

hdn
+ n−2p/(2p+d)

)
+ c4 · c7 · (C2h2pn + n−2p/(2p+d))

�c3 · C2d/(2p+d)n−2p/(2p+d)

where c3 = 3max{c4�2
0, L

2}c6 + 2c4c7. �

4. Proof of Theorem 2

First we define a subclass of distributions of (X,Y) contained inD(p,C,�,C,M, 1). Assume that X has a density

f (x) = c8 · 1

(1 + ||x||)2p+d
(x ∈ Rd),

thus

E||X||� �c8

∫
1

(1 + ‖x‖)d+(2p−�)
dx =: M<∞.
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Set g(x) = C · ḡ(x) for some function ḡ : Rd → R such that ḡ(x) = 0 for x /∈ [−1/2, 1/2]d, ḡ(x)�0 elsewhere, ḡ bounded in absolute
value by 1, and ḡ (p, 2�−1)-smooth, where p = k + � for some k ∈ N0, 0 < ��1. The class of regression functions will be indexed
by a vector

c = (c1n,1, . . . , c
1
n,Nn,1

, . . . , cjmax(n)
n,1 , . . . , cjmax(n)

n,Nn,jmax(n)
)

of +1 or −1 components, where jmax(n) and Nn,1, . . . ,Nn,jmax(n) are defined below. Denote the set of all such vectors by Cn.
For c ∈ Cn define the function

m(c)(x) =
jmax(n)∑
j=1

Nn,j∑
k=1

cjn,kg
j
n,k(x),

where

gjn,k(x) = M−p
n,j g(Mn,j(x − ajn,k)).

Set

Mn,j = �C2/(2p+d) · n1/(2p+d)/j	,

partition [−j, j]d into (2j)dMd
n,j uniform cubes Ajn,k of side length hn,j = 1/Mn,j and let ajn,1, . . . , a

j
n,Nn,j

be the centers of those cubes

A ∈ {Ajn,k|k= 1, . . . , (2j)dMd
n,j} which satisfy A ⊆ [−j, j]d\[−(j− 1), j− 1]d. (The last condition ensures that the supports of the gjn,k's

are disjoint.) W.l.o.g. assume that ajn,k is the center of Ajn,k. Here Nn,j is the number of those sets Ajn,k which are contained in

[−j, j]d\[−(j − 1), j − 1]d. In case of

hn,j = 1
Mn,j

�
j

C2/(2p+d)n1/(2p+d)
�

1
2
,

(which is implied by j < � 12C2/(2p+d)n1/(2p+d)	 = jmax(n)) all cubes A
j
n,k which are not contained in [−(j − 1/2), j − 1/2]d have this

property. There are at most

(2j − 1)d

hdn,j
= (2j − 1)dMd

n,j

cubes in [−(j − 1/2), j − 1/2]d, thus

Nn,j�
(2j)d

hdn,j
− (2j − 1)d

hdn,j
= c9j

d−1Md
n,j,

where c9 = 2d−1. We can show similarly as in the proof of Theorem 3.2 in Györfi et al. (2002) that m(c) is (p,C)-smooth. Hence
each distribution (X,Y) with Y =m(c)(X)+N for X,N independent, N standard normal, X having density f and c ∈ Cn is contained
inD(p,C,�,C,M, 1). Thus it suffices to show

lim inf
n→∞ n2p/(2p+d) inf

mn
sup

(X,Y):Y=m(c)(X)+N,c∈Cn ,
X has density f

E
∫

|mn(x) − m(c)(x)|2�(dx) = ∞.

Let mn be an arbitrary estimate. Since {gjn,k(x) : j, k} is an orthogonal system in L2, the projection m̂n of mn to {m(c) : c ∈

R

∑jmax(n)
j=1 Nn,j } is given by

m̂n(x) =
jmax(n)∑
j=1

Nn,j∑
k=1

ĉjn,kg
j
n,k(x),

where

ĉjn,k =

∫
Ajn,k

mn(x)g
j
n,k(x)�(dx)∫

Ajn,k
(gjn,k(x))

2�(dx)
.
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Let c ∈ Cn be arbitrary. Then∫
|mn(x) − m(c)(x)|2�(dx)�

∫
|m̂n(x) − m(c)(x)|2�(dx)

=
jmax(n)∑
j=1

Nn,j∑
k=1

∫
(ĉjn,kg

j
n,k(x) − cjn,kg

j
n,k(x))

2�(dx)

=
jmax(n)∑
j=1

Nn,j∑
k=1

(ĉjn,k − cjn,k)
2
∫

|gjn,k(x)|
2�(dx).

Let c̃jn,k be 1 when ĉjn,k�0 and −1 otherwise. Because of

|ĉjn,k − cjn,k|�1{c̃jn,k � cjn,k},

we have

∫
|mn(x) − m(c)(x)|2�(dx)�

jmax(n)∑
j=1

Nn,j∑
k=1

1{c̃jn,k � cjn,k}

∫
|gjn,k(x)|

2�(dx).

Fix 1� j� jmax(n) and 1�k�Nn,j. Then

gjn,k(x) = 0 for x /∈ [−j, j]d,

so ∫
|gjn,k(x)|

2�(dx) =
∫

|gjn,k(x)|
2f (x) dx

� c8
1

(1 +
√
dj)2p+d

∫
|gjn,k(x)|

2 dx

= c8
1

(1 +
√
dj)2p+d

1

M2p+d
n,j

C2
∫

ḡ2(x) dx

which implies

E
∫

|mn(x) − m(c)(x)|2�(dx)�
jmax(n)∑
j=1

Nn,j∑
k=1

1

M2p+d
n,j

· C2 · c8 ·
∫

ḡ2(x) dx · P{c̃jn,k � cjn,k}
1

(1 +
√
dj)2p+d

.

Now, let us randomize c by taking a sequence C1n,1, . . . ,C
jmax(n)
n,Nn,jmax(n)

of i.i.d. random variables independent of (X1,N1), (X2,N2), . . . ,

satisfying

P{C1n,1 = 1} = P{C1n,1 = −1} = 1
2 .

Then

n2p/(2p+d) inf
mn

sup
(X,Y):Y=m(c)(X)+N,c∈Cn ,

X has density f

E
∫

|mn(x) − m(c)(x)|2�(dx)

� inf
c̃

n−d/(2p+d)
jmax(n)∑
j=1

Nn,j∑
k=1

j2p+d · c8 ·
∫

ḡ2(x) dx
1

(1 +
√
dj)2p+d

P{c̃jn,k �Cjn,k},

where c̃ is the vector of c̃jn,k which can be interpreted as a decision on Cjn,k using the observed data. Fix 1� j� jmax(n) and

1�k�Nn,j. Let Xi1 , . . . ,Xil be those Xi ∈ Ajn,k. Then

(Yi1 , . . . ,Yil ) = Cjn,k · (gjn,k(Xi1 ), . . . , g
j
n,k(Xil )) + (Ni1

, . . . ,Nil
),
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while

{Y1, . . . ,Yn}\{Yi1 , . . . ,Yil }

are independent of Cjn,k given X1, . . . ,Xn. By Lemma 3.2 in Györfi et al. (2002) we get

P{c̃jn,k �Cjn,k|X1, . . . ,Xn}��

⎛
⎜⎝−

√√√√√ l∑
r=1

(gjn,k(Xir ))
2

⎞
⎟⎠

= �

⎛
⎝−

√√√√ n∑
i=1

(gjn,k(Xi))
2

⎞
⎠ ,

where � is the standard normal distribution function. Since �(−√
x) is convex we get by Jensen's inequality

P{c̃jn,k �Cjn,k}��

⎛
⎜⎝−

√√√√√E

⎧⎨
⎩

n∑
i=1

(gjn,k(Xi))
2

⎫⎬
⎭
⎞
⎟⎠= �

(
−
√
nE{(gjn,k(X1))

2}
)
.

Because of

nE{(gjn,k(X1))
2} = nM−2p

n,j

∫
Ajn,k

g2(Mn,j(x − ajn,k))f (x) dx

� nM−2p
n,j

∫
Ajn,k

g2(Mn,j(x − ajn,k))
c8

(1 + (j − 1))2p+d
dx

= nM−2p−d
n,j C2

∫
ḡ2(x) dx · c8

j2p+d

= c8 ·
∫

ḡ2(x) dx <∞

we conclude

n2p/(2p+d) inf
mn

sup
(X,Y):Y=m(c)(X)+N,c∈Cn ,

X has density f

E
∫

|mn(x) − m(c)(x)|2�(dx)

�c10 · n−d/(2p+d)
jmax(n)∑
j=1

Nn,j · j2p+d · 1

(1 +
√
dj)2p+d

�c11 · n−d/(2p+d)
jmax(n)∑
j=1

jd−1 · C2d/(2p+d)(nd/(2p+d)/jd) · j2p+d 1

(1 +
√
dj)2p+d

�c12 · C2d/(2p+d)
jmax(n)∑
j=1

1
j

→ ∞

since jmax(n) → ∞ as n → ∞, where c12 depends on C,d, p and c8. �

Acknowledgment

The authors wish to thank an anonymous referee and an Associate Editor for several helpful comments.

References

Cover, T.M., 1968. Rates of convergence for nearest neighbor procedures. Proceedings of the Hawaii International Conference on System Sciences, Honolulu,
HI, pp. 413–415.

Devroye, L., 1982. Any discrimination rule can have arbitrarily bad probability of error for finite sample size. IEEE Trans. Pattern Anal. Mach. Intell. 4, 154–157.
Devroye, L., Györfi, L., Krzy �zak, A., Lugosi, G., 1994. On the strong universal consistency of nearest neighbor regression function estimates. Ann. Statist. 22,

1371–1385.
Greblicki, W., Krzy �zak, A., Pawlak, M., 1984. Distribution-free pointwise consistency of kernel regression estimate. Ann. Statist. 12, 1570–1575.
Györfi, L., 1981. The rate of convergence of kn-NN regression estimates and classification rules. IEEE Trans. Inform. Theory 27, 362–364.
Györfi, L., Walk, H., 1996. On the strong universal consistency of a series type regression estimate. Math. Methods Statist. 5, 332–342.
Györfi, L., Walk, H., 1997. On the strong universal consistency of a recursive regression estimate by Pál Révész. Statist. Probab. Lett. 31, 177–183.



1296 M. Kohler et al. / Journal of Statistical Planning and Inference 139 (2009) 1286 -- 1296

Györfi, L., Kohler, M., Walk, H., 1998. Weak and strong universal consistency of semi-recursive partitioning and kernel regression estimates. Statist. Decisions 16,
1–18.

Györfi, L., Kohler, M., Krzy �zak, A., Walk, H., 2002. A Distribution-Free Theory of Nonparametric Regression. Springer Series in Statistics. Springer, New York.
Kohler, M., 1999. Universally consistent regression function estimation using hierarchical B-splines. J. Multivariate Anal. 67, 138–164.
Kohler, M., 2000. Inequalities for uniform deviations of averages from expectations with applications to nonparametric regression. J. Statist. Plann. Inference 89,

1–23.
Kohler, M., 2002. Universal consistency of local polynomial kernel regression estimates. Ann. Inst. Statist. Math. 54, 879–899.
Kohler, M., 2006. Nonparametric regression with additional measurement errors in the dependent variable. J. Statist. Plann. Inference 136, 3339–3361.
Kohler, M., Krzy �zak, A., 2001. Nonparametric regression estimation using penalized least squares. IEEE Trans. Inform. Theory 47, 3054–3058.
Kohler, M., Krzy �zak, A., Walk, H., 2006. Rates of convergence for partitioning and nearest neighbor regression estimates with unbounded data. J. Multivariate

Anal. 97, 311–323.
Kulkarni, S.R., Posner, S.E., 1995. Rates of convergence of nearest neighbor estimation under arbitrary sampling. IEEE Trans. Inform. Theory 41, 1028–1039.
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